首页 > 资讯 >

七年级下数学优化试题

2023-08-01 16:24:42 来源:互联网

以下是小编精心整理的七年级下数学优化试题,仅供参考,希望能够帮助到大家。如果这9篇文章还不能满足您的需求,您还可以在本站搜索到更多与七年级下数学优化试题相关的文章。


(资料图片)

篇1:七年级下数学优化试题

七年级下数学优化试题

一、选择题(本大题共有6小题,每小题3分,共18分)

1.下列每组数据表示3根小木棒的长度,其中能组成一个三角形的是

A.3cm,4cm,7cmB.3cm,4cm,6cm

C.5cm,4cm,10cmD.5cm,3cm,8cm

2.下列计算正确的是()

A.(a3)4=a7B.a8÷a4=a2C.(2a2)3a3=8a9D.4a5-2a5=2

3.下列式子能应用平方差公式计算的是()

A.(x-1)(y+1)B.(x-y)(x-y)C.(-y-x)(-y-x)D.(x2+1)(1-x2)

4.下列从左到右的变形属于因式分解的是()

A.x2–2xy+y2=x(x-2y)+y2B.x2-16y2=(x+8y)(x-8y)

C.x2+xy+y2=(x+y)2D.x4y4-1=(x2y2+1)(xy+1)(xy-1)

5.在△ABC中,已知∠A:∠B:∠C=2:3:4,则这个三角形是()

A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形

二、实验题

6.某次地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有种.

7.()3=8m=6.

8.已知方程5x-y=7,用含x的代数式表示y,y=.

9.用小数表示2.014×10-3是.

10.若(x+P)与(x+2)的乘积中,不含x的一次项,则常数P的值是.

11.若x2+mx+9是完全平方式,则m的值是.

12.若,则的值是.

13.若一个多边形内角和等于1260°,则该多边形边数是  。

14.已知三角形的`两边长分别为10和2,第三边的数值是偶数,则第三边长为.

15将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.

篇2:七年级数学下单元测试试题

七年级数学下单元测试试题

一、选择题(每小题3分,共30分)

1、下列计算正确的是( )

A. B. C. D.

2、等于( )

A. B. C. D.

3、若(5a+3b)2=(5a-3b)2+A,那么A等于( )

A.30ab B.60ab C.15ab D.12ab

4、已知一个多项式的次数是6,则这个多项式的任何一项的次数都( )

A.小于 6 B.等于6 C.不大于6 D.不小于6

5、一个正方形的边长增加2cm,它的面积就增加了24cm ,这个正方形原来的边长是( )

A.5cm B.6cm C.8cm D.10cm

6、下列算式正确的是( )

A. B.

C. D.

7、代数式 的值是( )

A.0 B.2 C.-2 D.不能确定

8、可以运用平方差公式运算的有( )个

① ② ③

A.1 B.2 C.3 D.0

9、对于任意正整数n,按照平方 答案 程序计算,应输出的答案是( )

A. B. C. D.1

10、在式子① ② ③ ④ ⑤ 中相等的是( )

A.①④ B.②③ C.①⑤ D.②④

二、填空题(每小题4分,共20分)

11.一台电视机成本价为 元,销售价比成本价增加15%,因库存积压,所以就按销售价的60%出售.那 么,每台实际售价为________元.

12.下列整式中单项式有_________,多项式有_________.

, , ,-2

13.多项式 中,次数最高的项是________,它是______次的,它的系数是_________.

14.若代数式 的值是4,则代数式 的"值是_________.

15.请写一个系数为负分数,含有字母 的4次单项式________.

三、解答题(每小题4分,共24分)

16.计算:

(1)、(2)、

四、1.、已知A=-4a3-3+2a2+5a,B=3a3-a-a2,求:A-2B. (8分)

2.、先化简,再求值:(8分)

[(a+b)(a-b) -(a-b)2+2b(a-b)]4b, 且a=2,b=-2.

附加题、(各5分,共10分)

1、已知 , , , ,

,根据前面各式的规律可猜测: .(其中n为自然数)

2、求m2-8m+9的最小值及取得最小值的时候m的值等于多少?

篇3:七年级下数学辅导试题

七年级下数学辅导试题

一、选择题

1.点(-3,-1)所在的象限是(  ).

A.第一象限    B.第二象限   C.第三象限    D.第四象限

2.点(a-1,3)在y轴上,则a的值为(  ).

A.1      B.-1    C.0      D.3

3.在平面直角坐标系中,点A(2,5)与点B轴对称,则点B的坐标是(  ).

A.(-5,-2)    B.(-2,-5)  C.(-2,5)     D.(2,-5)

4.点A(a-1,a-3)在x轴上,则点B(a-2,2a-3)在(  ).

A.第一象限    B.第二象限   C.第三象限    D.第四象限

5.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是(  ).

A.(0,1)     B.(2,-1)   C.(4,1)     D.(2,3)

6.A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为(  ).

A.2      B.3    C.4      D.5

7.在平面直角坐标系中,点A位于y轴的左侧,x轴的上方,并且距离每个坐标轴都是4个单位长度,则点A的坐标是(  ).

A.(4,4)     B.(4,-4)   C.(-4,4)     D.(-4,-4)

8.线段MN在平面直角坐标系中的位置,线段M1N1与MN轴对称,则点M的对应点M1的坐标为(  ).

A.(4,2)     B. (-4,2)   C.(-4,-2)    D.(4,-2)

二、填空题

9.下列点A(-3,-4),B(5,-2),C-3,12,D2,32,E(0,-1),F(3,0)中属于第一象限的有__________,属于第四象限的有__________.

10.已知点P在第四象限,且到x轴的距离是1,到y轴的距离是3,则P的坐标是__________.

11 .已知B(2,1),AB∥y轴,且AB=4,则A的坐标是__________.

12.将点A(4,3)向__________平移__________个单位长度后,其坐标为(-1,3).

13.是永州市几个主要景点,根据信息可确定九疑山的中心位置C点的坐标为__________.

14.是小刚画的一张脸,他对妹妹说,如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成__________.

15.若点E的坐标为(-2,1),点F的坐标为(1,-1),则点G的坐标为__________.

16.△ABC向右平移4个单位后得到△A′B′C′,则A′点的坐标是__________.

三、解答题

17.某班教室中有9排5列座位,请根据下面四个同学的描述,标出“5号”小明的位置.1号同学说:“小明在我的右后方.”2号同学说:“小明在我的.左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”

18.写出点A,B,C,D,E,F的坐标.

19.小强在电脑上制作了图案.

(1)写出A,B,C,D四点的坐标;

(2)小强又将图案 在其他位置复制了一个(相当于平移),已知新图形中A′点的坐标是(4,6),求E,F,G的对应点E′,F′,G′的坐标.

20.小华在直角坐标系中设计了一种裙子图案,现在她想把裙子图案向右平移4个单位长度.已知裙子图案上的几个点的坐标为(-4,6),(-2,6),(-2,5),(-3,5),(-4,5),(-5,1),(-3,1),(-1,1).请写出平移后上述各点的坐标.

篇4:七年级下数学期中试题

七年级下数学期中试题

(一)

一、选择题(每小题3分,共30分)

1、下列运算正确的是( )

A. B. C. D.

2、下列说法错误的是( )

A.两直线平行,内错角相等 B.两直线平行,同旁内角相等

C.同位角相等,两直线平行 D.平行于同一条直线的两直线平行

3、下列关系式中,正确的是( )

A. B.

C. D.

4、等腰三角形的两边长分别为4和9,则它的周长 ( )

A、17 B、22 C、17或22 D、21

5、如图,AB∥ED,则∠A+∠C+∠D=( )

A.180° B.270° C.360° D.540°

6、下列各式中不能用平方差公式计算的是( )

A、B、

C、D、

7.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为图中的

8、,则 等于( )

A、1 B、C、D、

9、如果一个角的补角是150°,那么这个角的余角的度数是( )

A、30° B、60° C、90° D、120°

10、一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度y(cm)与燃烧时间x(小时)的关系用下图中________图象表示.

二、填空题(每小题3分,共30分)

11.已知变量s与t的关系式是 ,则当 时, .

12、一个角的补角是它的余角的4倍,则这个角是_________度。

13、若x2+mx+25是完全平方式,则m=___________。

14、已知 , 那么 a = 。

15、若 ,则

16、已知:如图1,∠EAD=∠DCF,要得到AB//CD,则需要的条件 。

(填一个你认为正确的条件即可)

17、若 ,则 =__________.

18、在△ABC中,∠A=800,∠ABC与∠ACB的平分线义交于点O,则∠BOC=_______度。

18、观察:

你发现了什么规律?根据你发现的规律,请你用含一个字母的等式将上面各式呈现的规律表示出来。 。

19、现在规定两种新的运算“﹡”和“◎”:a﹡b= ;a◎b=2ab,如(2﹡3)(2◎3)=(22+32)(2×2×3)=156,则[2﹡(-1)][2◎(-1)]= .

三、解答题(21题12分,22、23、26各8分,24、25、各12分,共60分)

20、计算题

(1)

(2)化简求值: ,其中 ,

21、作图题(不写做法,保留作图痕迹)

已知:∠ 。请你用直尺和圆规画一个∠BAC,使∠BAC=∠ 。

22、已知:如图,AB∥CD,∠A = ∠D,试说明 AC∥DE 成立的理由。

下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整。

解:∵ AB ∥ CD (已知)

∴ ∠A = (两直线平行,内错角相等)

又∵ ∠A = ∠D ( )

∴ ∠ = ∠ (等量代换)

∴ AC ∥ DE ( )

23、图a是一个长为2 m、宽为2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b的形状拼成一个正方形。(1)、你认为图b中的阴影部分的正方形的边长等于多少?_________________________________________

(2)、请用两种不同的方法求图中阴影部分的面积。

图a 图b

方法1: 方法2:

(3)、观察图b你能写出下列三个代数式之间的等量关系吗?

代数式:

(4)、根据(3)题中的等量关系,解决如下问题:

若 ,则 = 。

24.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.

(1)此变化过程中,__________是自变量,_________是因变量.

(2)甲的速度________乙的速度(大于、等于、小于)

(3)6时表示________

(4)路程为150km,甲行驶了____小时,乙行驶了_____小时.

(5)9时甲在乙的________(前面、后面、相同位置)

(6)乙比甲先走了3小时,对吗?__________

25.(本8题分)(1)比较左、右两图的阴影部分面

积,可以得到乘法公式___________________

(用式子表达).

(2)运用你所得到的公式,计算

(a+2b-c)(a-2b—c)

(二)

试题

一、选择题 (本大题共10小题,每小题3分,共30分)

1.如图所示,∠1和∠2是对顶角的是 ( )

2.计算 的结果是 ( )

A.2 B.±2 C.-2 D.4

3.实数-2,0.3, , ,-π中,无理数的个数有 ( )

A.1个 B.2个 C.3个 D.4个

4.我们常用如图所示的方法过直线外一点画已知直线的平行线,其依据是 ( )

A.同位角相等,两直线平行 B.内错角相等,两直线平行

C.同旁内角互补,两直线平行 D.两直线平行,同位角相等

5.估计 的值 ( )

A.在3到4之间 B.在4到5之间 C.在5到6之间 D.在6到7之间

6.方程组 的解为 ,则被遮盖的两个数分别为 ( )

A.5,2 B.1,3 C.2,3 D.4,2

7.把点(2,一3)先向右平移3个单位长度,再向下平移2个单位长度得到的点的坐标是 ( )

A.(5,-1) B.(-1,-5) C.(5,-5) D.(-1,-1)

8.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是 ( )

A.(-4,3) B.(4,-3) C.(-3,4) D.(3,-4)

9.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是 ( )

A. B.

C. D.

10.如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为 ( )

A. B.

C. D.

二、填空题 (本大题共8小题,每小题4分,共32分)

11.如果用(7,1)表示七年级一班,那么八年级五班可表示成 .

12.计算: = .

13.把命题“等角的补角相等”写成“如果……,那么……”形式为: .

14.已知 是方程 的解,则 的值为 .

15.一个正数的两个平方根分别为a+3和2a+3,则a= .

16.已知2a+3b+4=0,则 .

17.已知点A(4,3),AB∥y轴,且AB=3,则B点的坐标为 .

18.三个同学对问题“若方程组 的解是 ,求方程组 的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .

三、解答题 (本大题共8小题,共58分)

19.(本题满分8分)

(1)解方程: (2)解方程组:

20.(本题满分6分)如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD和∠EDC的度数.

21.(本题满分6分)在y= 中,当 时,y= ; 时,y= ; 时,y= ,求 的值.

22.(本题满分6分)如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,铺设管道向两个小区输气.有以下两个方案:

方案一:只取一个连接点P,使得向两个小区铺设的支管道总长度最短;

方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N到D小区铺设的管道最短.om

(1)在图中标出点P、M、N的位置,保留画图痕迹;

(2)设方案一中铺设的支管道总长度为L1,方案二中铺设的支管道总长度为L2,则L1 与L2的大小关系为:L1 L2(填“>”、“<”或“=”).

23.(本题满分6分)已知:如图AB⊥BC,BC⊥CD且∠1=∠2,试说明:BE∥CF.

解:∵AB⊥BC,BC⊥CD(已知)

∴ = =90°( )

∵∠∠1=∠2(已知)

∴ = (等式性质)

∴BE∥CF( )

24.(本题满分8分) 与 在平面直角坐标系中的位置如图.

⑴分别写出下列各点的坐标: ; ; ;

⑵说明 由 经过怎样的平移得到? .

⑶若点 ( , )是 内部一点,则平移后 内的`对应点 的坐标为 ;

⑷求 的面积.

25.(本题满分8分)如图,DE⊥AC于点E,BF⊥AC于点F,∠1+∠2=180°,

试判断∠AGF与∠ABC的大小关系,并说明理由.

26.(本题满分10分)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)

(1)该商场第1次购进A、B两种商品各多少件?

(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于7元,则B种商品是打几折销售的?

七 年 级 数 学 参 考 答 案一、选择题

题号 1 2 3 4 5 6 7 8 9 10

答案 C A B A C D C C B D

二、填空题

11、(8,5) 12、13、如果两个角相等,那么这两个角的补角相等.

或(如果两个角是相等的两个角的补角,那么这两个角相等.)

14、3 15、-2 16、13 17、(4,6)或(4,0) 18、

三、解答题

19、(1)解: x-1=±2 ………………………………………………………… (2分)

∴ x = 3或-1 ………………………………………………………… (4分)

(2)解: ①+② 得: x =-1 ……………………………………… (2分)

把x =-1代入①得:y=2 ……………………………………… (3分)

∴原方程组的解为 ……………………………………… (4分)

(用代入法解参照给分)

20、解: ∵AB∥CD

∴∠C+∠ABC=180° ………………………………………………… (2分)

∵∠C=140°

∴∠ABC=40° …………………………………………… (3分)

又∵BE平分∠ABC

∴∠ABD=∠ECB=20° ……………………………………………… (4分)

又∵AB∥CD h

∴∠BDC=∠ABD=20° …………………………………………… (5分)

∴∠EDC=180°-∠BDC=160° ……………………………………… (6分)

21、解: 由题意得: ………………………… (3分)

把c=0代入②、③得: …………………………… (4分)

解得:a=1,b=-3. ……………………………… (5分)

∴a=1,b=-3,c=-7. ………………………… (6分)

22、解:(1)图略.画垂线段各2分,少直角标志扣1分,连接CD 1分 ……… (5分)

(2)L1 > L2 ……………………………… (6分)

23、解:∵AB⊥BC,BC⊥CD(已知) ……………………………… (每空1分,共6分)

∴∠ABC=∠DCB=90°( 垂直的定义 )

∵∠1=∠2(已知)

∴∠EBC =∠FCB (等式性质)

∴BE∥CF( 内错角相等,两直线平行 )

24、解:(1) (-3,1); (-2,-2) ; (-1,-1) ; ……… (3分)

(2) 先向左平移4个单位,再向下平移2个单位

或 先向下平移2个单位,再向左平移4个单位 ……… (4分)

(3) (a-4,b-2) …………………………………………… (5分)

(4)将 补成长方形,减去3个直角三角形的面积得:

6-1.5-0.5-2=2 ……………………………………… (8分)

(补成其他图形均可,酌情给分)

25、解:∠AGF=∠ABC. ……………………………………… (1分)

理由如下:∵DE⊥AC,BF⊥AC

∴∠AFB=∠AED=90° ……………………………………… (2分)

∴BF∥DE ……………………………………… (3分)

∴∠2+∠3=180° ……………………………………… (4分)

又∵∠1+∠2=180°

∴∠1=∠3 ……………………………………… (5分)

∴GF∥BC ……………………………………… (6分)

∴∠AGF=∠ABC. ……………………………………… (7分)

26、解:(1)设第1次购进A商品x件,B商品y件.由题意得:

(2)设B商品打m折出售.由题意得:

…………… (8分)

解得:m=9 …………………………… (9分)

答:B商品打9折销售的.

(三)

一、填空(每空1分,共17分)

1.在下列图案中可以用平移得到的是___________(填代号).

2.有一种原子的直径约为0.00000053米, 用科学记数法表示为 .

3. ___ __; _ ; __ ___; = .

4. ; = .

5 .比较大小:

6. 如图,直线 1∥ 2,AB⊥ 1,垂足为O,BC与 2相交于点E,若∠1=43°,则∠2=_ _°.

7.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=_______°.

8. 已知△ ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠B= °.

9. 一个多边形的每一个外角都是60°,则这个多边形是__ _边形,它的内角和 是____°.

10. 一个三角形的两边长分别是2和7,另一边长 为偶数,且 ,则这个三角形的周长为____________.

11. 用等腰直角三角板画 ,并将三角板沿 方向平移到如图所示的虚线处后绕点M逆时针方向旋转 ,则三角板的斜边与射线 的夹角 为______ .

12. 如果等式 ,则x= .

第6题 第7题 第11题

二、选择题(每题2分,共20分)

13.(-3a3)2的计算结果是

A.-9a5 B. 6a6 C. 9a6 D. 6a5

14.下列各式(1) (2) (-2a ) = (3) ( ) =

(4) 其中计算错误的有 ( )

A.1个 B.2个 C.3个 D.4个

15.如果 , ,那么 三数的大小为 ( )

A. B. C. D.

16.下列说法正确的是 ( )

A.同位角相等 B. 同角的补角相等

C.两直线平行,同旁内角相等 D. 相等的角是对顶角

17.小明同学在计算某n边形的内角和时,不小心少输入一个内角,得到和为°,则n等于 ( )

A.11 B.12 C.13 D.14

18.现有3cm、4cm、7cm、9cm长的四根木棒,任选其中三根组成一个三角形,那么可以组成的三角形的个数是 ( )

A.1 B.2 C.3 D.4

19.如图,下列判断正确的是 ( )

A.若∠1=∠2,则AD∥BC B.若∠1=∠2.则AB∥CD

C.若∠A=∠3,则 AD∥BC D.若∠A+∠ADC=180°,则AD∥BC

20.如图,在△ABC中,已知点D、E分别为边BC、AD、上的中点,且S△ABC=4cm2,则S△BEC的值为 ( )

A.2cm2 B.1cm2 C.0.5cm2 D.0.25cm2

21.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD且与EF交于点O,那么与∠AOE相等的角有( )

A.5个 B.4 个 C.3个 D.2个

22.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是,则m的值是 ( )

A.43 B.44 C.45 D.4

第19题 第20题 第21题

三、计算(每题4分,共24分)

23. 24.

25. 26. (b2n)3 (b3)4n÷(b5)n

27. 28.

四、解答题(29题11分,30题6分,31题8分,32题14分,共39分)

29.(1)已知 ,求① 的值; ② 的值

(2)已知 ,求x的值.

30.如图,在四边形ABCD中,∠B=∠D=90°,E是BC边上的一点,且∠AEC=∠BAD.试说明:AE∥DC.

31.如图,在△ABC中,∠B=24°,∠ACB=104°,AD⊥BC于D,AE平分∠BAC,求∠DAE的 度数.

32.(1)如图(1),在△ABC中,∠A=62°,∠ABD=20°,∠ACD=35°,求∠BDC的度数.

(2)图(1)所示的图形中,有像我们常见的学习用品——圆规。我们不妨把这样图形叫做“规形图”,观察“规形图”图(2),试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由.

(3)请你直接利用以上结论,解决以下三个问题:

①如图(3),把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX =__________°.

图(3)

②如图(4)DC平分∠ ADB, EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数.

七年级数学试卷答案

一、填空(每空1分,共17分)

1.③④ 2. 3. , 4. 5.=

6.110° 7.70° 8.50° 9.六,720 10.15 11.22° 12.3或1或0

二、选择题(每题2分,共20分)

13.C 14.D 15.C 16.B 17.D 18.B 19.B 20.A 21.A 22.C

三、计算(每题4分,共24分)

23.解:原式=1+4+1-3 3分 24.原式= 2分

=3 4分 = 4分

25. 原式= 3分 26.原式= 2分

= 4分 = 3分

= 4分

27. 原式= 1分

= 3分

= 4分

28. 原式= 1分

= 2分

= 3分

= 4分

四、解答题(29题11分,30题6分、31题每题8分,32题14分,共39分)

29.解:(1)① 2分 ② 1分

=2 3=6 3分 = 3分

= 4分

(2)∵

∴ 1分

∴ 2分

∴1+3x+4=23 3分

X=6 4分

30.在四边形ABCD中,

∵∠BAD+∠B+∠C+∠D=360°,∠B=∠D=90°

∴∠BAD+∠C=360°-∠B-∠D=360°-90°-90°=180° 2分

∵∠AEC=∠BAD

∴∠AEC+∠C=180° 2分

∴AE∥DC 2分

31.解:在△ABC中,

∵∠BAC+∠B+∠ACB=180°,∠B=24°,∠ACB=104°

∴∠BAC=180°-∠B-∠ACB=180°-24°-104°=52° 1 分

∴∠EAC= ∠ BAC= 52°=26° 3分

∵AD⊥BC

∴∠ADC=90° 4分

∵∠ACB=104°

∴∠ACD=180°-∠ACB=180°-104°=76° 6分

∴∠CAD=14°

∴∠DAE=∠EAC+∠CAD=40° 8分

32.解:(1)在△ABC中

∵∠A+∠ABC+∠ACB=180°

∴∠ABC+∠ACB=180°-62°=118° 1分

∵∠AB D=20°,∠ACD=35°

∴∠DBC+∠DCB=118°-20°-35°=63° 3分

∴∠BDC=180°-(∠DBC+∠DCB)=117° 4分

(2)∠BDC=∠A+∠B+∠C 1分

理由:连接BC

在△ABC中

∵∠A+∠ABD+∠DBC+∠ACD+∠BCD=180°

∴∠A+∠ ABD+∠ACD=180°-∠DBC-∠BCD 2分

在△DBC中

∵∠BDC+∠DBC+∠BCD=180°

∴∠BDC=180°-∠DBC-∠BCD 3分

∴∠BDC= ∠A+∠B+∠C 4分

(3)40° 2分

(4)∵∠DAE=50°,∠DBE=130°

∴∠ADB+∠AEB=80° 1分

∵DC平分∠ADB, EC平分∠AEB

∴∠ADC= ∠ADB, ∠AEC= ∠AEB

∴∠ADC+∠AEC= (∠ADB+∠AEB)=40° 3分

∴∠DCE=∠A+∠ADC+∠AEC=50°+40°=90° 4分

篇5:七年级下数学竞赛试题

七年级下数学竞赛试题

一、填空。(32分)

1、30千克=(     )吨               58千米7米=(     )千米

18平方分米=(     )平方米       9吨25千克=(     )吨=(     )千克

7.06平方千米=(     )公顷       3.08亿=(     )万

2、找规律填数。

(1)0、4、4、7、8、10、12、(     )、(     )、(     )。

(2)3、7、15、31、63、(     )、(     )。

(3)(18、17)、(14、10)、(10、1)、(□、5)。

3、6.8里有(     )个0.1, 有(     )个0.01。

4、一个等腰三角形,顶角是54°,底角是(     )。

5、设m是一个两位数,如果在m的左边添上一个0和一个小数点,那么所得的数是(     )。(用分数表示)。

6、一个三位小数精确到百分位后是5.79,这个三位小数最大是(     ),最小是(     )。

7、百位的2是百分位上2的(     )倍。

8、甲数是乙数的7倍,甲数比乙数多360,乙数是(     )。

9、小红将7×(△+4)计算成了7×△+4,她的答案与正确答案相差(     )。

10、用2、3、4和小数点,可以组成(     )个不同的小数。

11、一个等腰三角形的两条腰分别长3厘米,第三条边的长度可能是(     )厘米。

12、珍珍做一道加法式题,计算时发现,由于把一个加数的个位零漏掉了,结果比正确答案少702,这个加数是(     )。

13、在一个三角形中,一个内角的度数等于另外两个内角度数和的2倍,这个三角形是(     )三角形。

14、∠2的度数∠1的2倍,∠3的度数是∠1的3倍,这是个(     )三角形。

15、车站每隔5分钟开出1辆公交车,从上午8时开出第1辆开始计算,到上午9时,共开出(     )辆。

16、在一条长99米的路的.一边每隔9米种一棵柳树,两端都种,在相邻2棵柳树中间再种一棵杨树,每边一共种(    )棵树,每2棵杨树的距离是(     )米。

17、在适当的位置加上括号,使等式成立。

(1)7×9+12÷3-2=75               (2)7×9+12÷3-2=75

二、怎么简便就怎么计算。(15分)

(1)56×19+19×45-19             (2)997+9969+134

(3)25×4÷25×4                  (4)199+199×99

(5)(2005++++++)÷2008

三、“快乐24点”:有四张扑克牌分别是2、4、3、6,经过怎样的运算才能得到24呢?至少写出三种以上的计算方法。(6分)

四、数一数,下图中有(    )个三角形。(2分)

五、解决问题。(45分,每题5分。)

1、据计算,10000张纸的厚度是1米。那么你能算出1000张纸、1张纸的厚度吗?

2、48名学生围成正方形做游戏,每边人数相等,四个顶点都有人,每边各有多少名学生?

3、甲、乙两人沿运动场的跑道跑步,甲每分钟跑300米,乙每分钟跑280米,跑道一圈长400米。如果两人同时由同地、同方向起跑,那么甲经过多少时间才能第一次追上乙?

4、从广州到北京的某次快车中途要停靠8个大站。铁路局要为这次快车准备多少种不同的车票?

5、一只三层书架共放书108本,上层比中层多11本,下层比中层少5本,上、中、下三层各放书多少本?

6、粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。粮库原有大米多少吨?

7、A、B、C、D、E、F六个同学在放暑假前约定:假期中每两人都要通一次电话。到统计时为止,A已通了五次话,B已通了四次话,C已通了三次话,D已通了二次话,E已通了一次话,问F已通了几次话?

8、用一根绳子测量一个洞的深度。如果把绳子对折再对折,一端碰到洞底时,露在洞口的有1米;如果把绳子对折,一端碰到洞底时,露在洞口的的有5米。这个洞深多少米?

9、有一路电车的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站出发开往乙站,全程需要时间15分钟。有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站。在路上,他又遇到10辆迎面开来的电车后才到达甲站,这时候,恰好又有一辆电车从甲站开出。问他从乙站到甲站用了多少分钟?

篇6:七年级下数学复习重点试题

2020七年级下数学复习重点试题

一、选择题(每小题4分,共40分)

1.﹣4的绝对值是

A.B.C.4D.﹣4

考点:绝对值.

分析:根据一个负数的绝对值是它的相反数即可求解.

解答:解:﹣4的绝对值是4.

故选C.

点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.

绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

2.下列各数中,数值相等的是()

A.32与23B.﹣23与(﹣2)3C.3×22与(3×2)2D.﹣32与(﹣3)2

考点:有理数的乘方.

分析:根据乘方的意义,可得答案.

解答:解:A32=9,23=8,故A的数值不相等;

B﹣23=﹣8,(﹣2)3=﹣8,故B的数值相等;

C3×22=12,(3×2)2=36,故C的数值不相等;

D﹣32=﹣9,(﹣3)2=9,故D的数值不相等;

故选:B.

点评:本题考查了有理数的乘方,注意负数的偶次幂是正数,负数的奇次幂是负数.

3.0.3998四舍五入到百分位,约等于()

A.0.39B.0.40C.0.4D.0.400

考点:近似数和有效数字.

分析:把0.3998四舍五入到百分位就是对这个数百分位以后的数进行四舍五入.

解答:解:0.3998四舍五入到百分位,约等于0.40.

故选B.

点评:本题考查了四舍五入的方法,是需要识记的内容.

4.如果是三次二项式,则a的值为()

A.2B.﹣3C.±2D.±3

考点:多项式.

专题:计算题.

分析:明白三次二项式是多项式里面次数的项3次,有两个单项式的和.所以可得结果.

解答:解:因为次数要有3次得单项式,

所以|a|=2

a=±2.

因为是两项式,所以a﹣2=0

a=2

所以a=﹣2(舍去).

故选A.

点评:本题考查对三次二项式概念的理解,关键知道多项式的次数是3,含有两项.

5.化简p﹣[q﹣2p﹣(p﹣q)]的结果为()

A.2pB.4p﹣2qC.﹣2pD.2p﹣2q

考点:整式的加减.

专题:计算题.

分析:根据整式的加减混合运算法则,利用去括号法则有括号先去小括号,再去中括号,最后合并同类项即可求出答案.

解答:解:原式=p﹣[q﹣2p﹣p+q],

=p﹣q+2p+p﹣q,

=﹣2q+4p,

=4p﹣2q.

故选B.

点评:本题主要考查了整式的加减运算,解此题的关键是根据去括号法则正确去括号(括号前是﹣号,去括号时,各项都变号).

6.若x=2是的方程2x+3m﹣1=0的解,则m的值为()

A.﹣1B.0C.1D.

考点:一元一次方程的解.

专题:计算题.

分析:根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.

解答:解:∵x=2是的方程2x+3m﹣1=0的解,

∴2×2+3m﹣1=0,

解得:m=﹣1.

故选:A.

点评:本题的关键是理解方程的解的定义,方程的解就是能够使方程左右两边相等的未知数的值.

7.某校春季运动会比赛中,八年级(1)班、(5)班的竞技实力相当,赛结果,甲同学说:(1)班与(5)班得分比为6:5;乙同学说:(1)班得分比(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的方程组应为()

A.B.

C.D.

考点:由实际问题抽象出二元一次方程组.

分析:此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40.

解答:根据(1)班与(5)班得分比为6:5,有:

x:y=6:5,得5x=6y;

根据(1)班得分比(5)班得分的2倍少40分,得x=2y﹣40.

可列方程组为.

故选:D.

点评:列方程组的关键是找准等量关系.同时能够根据比例的基本性质对等量关系①把比例式转化为等积式.

8.下面的平面图形中,是正方体的平面展开图的是()

A.B.C.D.

考点:几何体的展开图.

分析:由平面图形的折叠及正方体的展开图解题.

解答:解:选项A、B、D中折叠后有一行两个面无法折起来,而且缺少一个底面,不能折成正方体.

故选C.

点评:熟练掌握正方体的表面展开图是解题的关键.

9.如图,已知∠AOB=∠COD=90°,又∠AOD=170°,则∠BOC的度数为()

A.40°B.30°C.20°D.10°

考点:角的计算.

专题:计算题.

分析:先设∠BOC=x,由于∠AOB=∠COD=90°,即∠AOC+x=∠BOD+x=90°,从而易求∠AOB+∠COD﹣∠AOD,即可得x=10°.

解答:解:设∠BOC=x,

∵∠AOB=∠COD=90°,

∴∠AOC+x=∠BOD+x=90°,

∴∠AOB+∠COD﹣∠AOD=∠AOC+x+∠BOD+x﹣(∠AOC+∠BOD+x)=10°,

即x=10°.

故选D.

点评:本题考查了角的计算、垂直定义.关键是把∠AOD和∠AOB+∠COD表示成几个角和的形式.

10.小明把自己一周的支出情况用如图所示的统计图来表示,则从图中可以看出()

A.一周支出的总金额

B.一周内各项支出金额占总支出的百分比

C.一周各项支出的金额

D.各项支出金额在一周中的变化情况

考点:扇形统计图.

分析:根据扇形统计图的特点进行解答即可.

解答:解:∵扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,

∴从图中可以看出一周内各项支出金额占总支出的百分比.

故选B.

点评:本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键.

二、填空题(每小题5分,共20分)

11.在(﹣1)2010,(﹣1)2011,﹣23,(﹣3)2这四个数中,的数与最小的数的差等于17.

考点:有理数大小比较;有理数的减法;有理数的乘方.

分析:根据有理数的乘方法则算出各数,找出的数与最小的数,再进行计算即可.

解答:解:∵(﹣1)2010=1,(﹣1)2011=﹣1,﹣23=﹣8,(﹣3)2=9,

∴的数是(﹣3)2,最小的数是﹣23,

∴的数与最小的数的差等于=9﹣(﹣8)=17.

故答案为:17.

点评:此题考查了有理数的大小比较,根据有理数的乘方法则算出各数,找出这组数据的值与最小值是本题的关键.

12.已知m+n=1,则代数式﹣m+2﹣n=1.

考点:代数式求值.

专题:计算题.

分析:分析已知问题,此题可用整体代入法求代数式的值,把代数式﹣m+2﹣n化为含m+n的代数式,然后把m+n=1代入求值.

解答:解:﹣m+2﹣n=﹣(m+n)+2,

已知m+n=1代入上式得:

﹣1+2=1.

故答案为:1.

点评:此题考查了学生对数学整体思想的掌握运用及代数式求值问题.关键是把代数式﹣m+2﹣n化为含m+n的代数式.

13.已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为﹣7.

考点:同类项.

专题:计算题.

分析:由单项式与﹣3x2n﹣3y8是同类项,可得m=2n﹣3,2m+3n=8,分别求得m、n的值,即可求出3m﹣5n的值.

解答:解:由题意可知,m=2n﹣3,2m+3n=8,

将m=2n﹣3代入2m+3n=8得,

2(2n﹣3)+3n=8,

解得n=2,

将n=2代入m=2n﹣3得,

m=1,

所以3m﹣5n=3×1﹣5×2=﹣7.

故答案为:﹣7.

点评:此题主要考查学生对同类项得理解和掌握,解答此题的关键是由单项式与﹣3x2n﹣3y8是同类项,得出m=2n﹣3,2m+3n=8.

14.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,则线段AM的长为2cm或6cm.

考点:两点间的距离.

专题:计算题.

分析:应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上.

解答:解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm;

②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm.

故答案为6cm或2cm.

点评:本题主要考查两点间的距离的知识点,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.

三、计算题(本题共2小题,每小题8分,共16分)

15.

考点:有理数的混合运算.

专题:计算题.

分析:在进行有理数的混合运算时,一是要注意运算顺序,先算高一级的运算,再算低一级的运算,即先乘方,后乘除,再加减.同级运算按从左到右的顺序进行.有括号先算括号内的运算.二是要注意观察,灵活运用运算律进行简便计算,以提高运算速度及运算能力.

解答:解:,

=﹣9﹣125×﹣18÷9,

=﹣9﹣20﹣2,

=﹣31.

点评:本题考查了有理数的综合运算能力,解题时还应注意如何去绝对值.

16.解方程组:.

考点:解二元一次方程组.

专题:计算题.

分析:根据等式的性质把方程组中的方程化简为,再解即可.

解答:解:原方程组化简得

①+②得:20a=60,

∴a=3,

代入①得:8×3+15b=54,

∴b=2,

即.

点评:此题是考查等式的性质和解二元一次方程组时的加减消元法.

四、(本题共2小题,每小题8分,共16分)

17.已知∠α与∠β互为补角,且∠β的比∠α大15°,求∠α的余角.

考点:余角和补角.

专题:应用题.

分析:根据补角的定义,互补两角的和为180°,根据题意列出方程组即可求出∠α,再根据余角的定义即可得出结果.

解答:解:根据题意及补角的定义,

∴,

解得,

∴∠α的余角为90°﹣∠α=90°﹣63°=27°.

故答案为:27°.

点评:本题主要考查了补角、余角的定义及解二元一次方程组,难度适中.

18.如图,C为线段AB的中点,D是线段CB的中点,CD=1cm,求图中AC+AD+AB的长度和.

考点:两点间的距离.

分析:先根据D是线段CB的中点,CD=1cm求出BC的长,再由C是AB的中点得出AC及AB的长,故可得出AD的长,进而可得出结论.

解答:解:∵CD=1cm,D是CB中点,

∴BC=2cm,

又∵C是AB的中点,

∴AC=2cm,AB=4cm,

∴AD=AC+CD=3cm,

∴AC+AD+AB=9cm.

点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.

五、(本题共2小题,每小题10分,共20分)

19.已知,A=a3﹣a2﹣a,B=a﹣a2﹣a3,C=2a2﹣a,求A﹣2B+3C的值.

考点:整式的加减.

专题:计算题.

分析:将A、B、C的值代入A﹣2B+3C去括号,再合并同类项,从而得出答案.

解答:解:A﹣2B+3C=(a3﹣a2﹣a)﹣2(a﹣a2﹣a3)+3(2a2﹣a),

=a3﹣a2﹣a﹣2a+2a2+2a3+6a2﹣3a,

=3a3+7a2﹣6a.

点评:本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.

20.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数.

考点:一元一次方程的应用.

专题:数字问题;方程思想.

分析:先设这个两位数的十位数字和个位数字分别为x,7﹣x,根据题意列出方程,求出这个两位数.

解答:解:设这个两位数的十位数字为x,则个位数字为7﹣x,

由题意列方程得,10x+7﹣x+45=10(7﹣x)+x,

解得x=1,

∴7﹣x=7﹣1=6,

∴这个两位数为16.

点评:本题考查了数字问题,方程思想是很重要的数学思想.

六.(本题满分12分)

21.取一张长方形的纸片,如图①所示,折叠一个角,记顶点A落下的位置为A′,折痕为CD,如图②所示再折叠另一个角,使DB沿DA′方向落下,折痕为DE,试判断∠CDE的大小,并说明你的理由.

考点:角的计算;翻折变换(折叠问题).

专题:几何图形问题.

分析:根据折叠的原理,可知∠BDE=∠A′DE,∠A′DC=∠ADC.再利用平角为180°,易求得∠CDE=90°.

解答:解:∠CDE=90°.

理由:∵∠BDE=∠A′DE,∠A′DC=∠ADC,

∴∠CDA′=∠ADA′,∠A′DE=∠BDA,

∴∠CDE=∠CDA′+∠A′DE,

=∠ADA′+∠BDA,

=(∠ADA′+∠BDA′),

=×180°,

=90°.

点评:本题考查角的计算、翻折变换.解决本题一定明白对折的两个角相等,再就是运用平角的度数为180°这一隐含条件.

七.(本题满分12分)

22.为了“让所有的孩子都能上得起学,都能上好学”,国家自起出台了一系列“资助贫困学生”的政策,其中包括向经济困难的学生免费提供教科书的政策.为确保这项工作顺利实施,学校需要调查学生的家庭情况.以下是某市城郊一所中学甲、乙两个班的调查结果,整理成表(一)和图(一):

类型班级城镇非低保

户口人数农村户口人数城镇户口

低保人数总人数

甲班20550

乙班28224

(1)将表(一)和图(一)中的空缺部分补全.

(2)现要预定下学期的教科书,全额100元.若农村户口学生可全免,城镇低保的学生可减免,城镇户口(非低保)学生全额交费.求乙班应交书费多少元?甲班受到国家资助教科书的学生占全班人数的百分比是多少?

(3)五四青年节时,校团委免费赠送给甲、乙两班若干册科普类、文学类及艺术类三种图书,其中文学类图书有15册,三种图书所占比例如图(二)所示,求艺术类图书共有多少册?

考点:条形统计图.

分析:(1)由统计表可知:甲班农村户口的人数为50﹣20﹣5=25人;乙班的总人数为28+22+4=54人;

(2)由题意可知:乙班有22个农村户口,28个城镇户口,4个城镇低保户口,根据收费标准即可求解;

甲班的农村户口的学生和城镇低保户口的学生都可以受到国家资助教科书,可以受到国家资助教科书的总人数为25+5=30人,全班总人数是50人,即可求得;

(3)由扇形统计图可知:文学类图书有15册,占30%,即可求得总册数,则求出艺术类图书所占的百分比即可求解.

解答:解:

(1)补充后的图如下:

(2)乙班应交费:28×100+4×100×(1﹣)=2900元;

甲班受到国家资助教科书的学生占全班人数的百分比:×100%=60%;

(3)总册数:15÷30%=50(册),

艺术类图书共有:50×(1﹣30%﹣44%)=13(册).

点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

八、(本题满分14分)

23.如图所示,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数.

(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.

(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.

(4)从(1)(2)(3)的结果你能看出什么规律?

(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,并写出其中的规律来?

考点:角的计算.

专题:规律型.

分析:(1)首先根据题中已知的两个角度数,求出角AOC的度数,然后根据角平分线的定义可知角平分线分成的两个角都等于其大角的一半,分别求出角MOC和角NOC,两者之差即为角MON的度数;

(2)(3)的计算方法与(1)一样.

(4)通过前三问求出的角MON的度数可发现其都等于角AOB度数的一半.

(5)模仿线段的计算与角的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长.

解答:解:(1)∵∠AOB=90°,∠BOC=30°,

∴∠AOC=90°+30°=120°,

又OM平分∠AOC,

∴∠MOC=∠AOC=60°,

又∵ON平分∠BOC,

∴∠NOC=∠BOC=15°

∴∠MON=∠MOC﹣∠NOC=45°;

(2)∵∠AOB=α,∠BOC=30°,

∴∠AOC=α+30°,

又OM平分∠AOC,

∴∠MOC=∠AOC=+15°,

又∵ON平分∠BOC,

∴∠NOC=∠BOC=15°

∴∠MON=∠MOC﹣∠NOC=;

(3)∵∠AOB=90°,∠BOC=β,

∴∠AOC=90°+β,

又OM平分∠AOC,

∴∠MOC=∠AOC=+45°,

又∵ON平分∠BOC,

∴∠NOC=∠BOC=

∴∠MON=∠MOC﹣∠NOC=45°;

(4)从(1)(2)(3)的结果可知∠MON=∠AOB;

(5)

①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长;

②若把线段AB的长改为a,其余条件不变,求线段MN的长;

③若把线段BC的长改为b,其余条件不变,求线段MN的长;

④从①②③你能发现什么规律.

规律为:MN=AB.

点评:本题考查了学会对角平分线概念的理解,会求角的度数,同时考查了学会归纳总结规律的能力,以及会根据角和线段的紧密联系设计实验的能力.

2020七年级下数学复习重点试题

一、选择题(每题3分,共30分)

1.﹣2的相反数是()

A.﹣B.﹣2C.D.2

2.据平凉市旅游局统计,十一黄金周期间,平凉市接待游客38万人,实现旅游收入16000000元.将16000000用科学记数法表示应为()

A.0.16×108B.1.6×107C.16×106D.1.6×106

3.数轴上与原点距离为5的点表示的是()

A.5B.﹣5C.±5D.6

4.下列项式的说法中,正确的是()

A.系数、次数都是3B.系数是,次数是3

C.系数是,次数是2D.系数是,次数是3

5.如果x=6是方程2x+3a=6x的解,那么a的值是()

A.4B.8C.9D.﹣8

6.绝对值不大于4的所有整数的和是()

A.16B.0C.576D.﹣1

7.下列各图中,可以是一个正方体的平面展开图的是()

A.B.C.D.

8.“一个数比它的相反数大﹣4”,若设这数是x,则可列出的方程为()

A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4

9.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()

A.①②③B.①②④C.②③④D.①③④

10.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()

A.不赔不赚B.赚了32元C.赔了8元D.赚了8元

二、填空题(每题3分,共30分)

11.﹣3的倒数的绝对值是.

12.若a、b互为倒数,则2ab﹣5=.

13.若a2mb3和﹣7a2b3是同类项,则m值为.

14.若|y﹣5|+(x+2)2=0,则xy的值为.

15.两点之间,最短;在墙上固定一根木条至少要两个钉子,这是因为.

16.时钟的分针每分钟转度,时针每分钟转度.

17.如果∠A=30°,则∠A的余角是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是.

18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是.

19.若规定“乘以”的运算法则为:a乘以b=ab﹣1,则2乘以3=.

20.有一列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是.

三、计算和解方程(16分)

21.计算题(8分)

(1)

(2)(2a2﹣5a)﹣2(﹣3a+5+a2)

22.解方程(8分)

(1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣.

四、解答题(44分)

23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中.

24.(7分)一个角的余角比它的补角的大15°,求这个角的度数.

25.(7分)如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数.

26.(7分)一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?

27.(7分)今年春节,小明到奶奶家拜年,奶奶说过年了,大家都长了一岁,小明问奶奶多大岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮小明,算出奶奶的岁数.

28.(10分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.

(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?

(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?

参考答案

一、选择题(每题3分,共30分)

题号12345678910

答案DBCDBBCAAD

二、填空题(每题3分,共30分)

11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定一条直线;

16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21.

三、计算和解方程(16分)

21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1

四、解答题(44分)

23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3)

=-6x+9x2﹣3﹣9x2+x﹣3

=-5x﹣6----------------------------------------------------------------------------4分

当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分

24.解:设这个角的度数为x,则它的余角为(90°﹣x),补角为(180°﹣x),--------2分

依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分

解得x=40°.--------------------------------------------------------------------------------------6分

答:这个角是40°.----------------------------------------------------------------------------7分

25.解:∵OM平分∠BOC,ON平分∠AOC,

∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分

∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分

=(∠BOA+∠AOC﹣∠AOC)

=∠BOA

=45°.----------------------------------------------------------------------------------------------6分

故∠MON的度数为45°.-------------------------------------------------------------------------7分

26.解:设乙还需做x天.-----------------------------------------------------------------------1分

由题意得:++=1,-------------------------------------------------------------------------4分

解之得:x=3.------------------------------------------------------------------------------------6分

答:乙还需做3天.------------------------------------------------------------------------------7分

27.解:设小明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分

4(x+5)=5x+5,---------------------------------------------------------------------------------3分

解得:x=15,-------------------------------------------------------------------------------------5分

经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分

答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分

28.解:(1)设小玲每月上网x小时,根据题意得------------------------------------------1分

(0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分

解得x=.-----------------------------------------------------------------------------------------5分

答:小玲每月上网小时;--------------------------------------------------------------------6分

(2)如果一个月内上网的时间为65小时,

选择A、计时制费用:(0.05+0.02)×60×65=273(元),----------------------------------8分

选择B、月租制费用:50+0.02×60×65=128(元).

所以一个月内上网的时间为65小时,采用月租制较为合算.--------------------------------10分

【篇三】

一、选择题:每小题3分,共30分。

1.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()

A.这1000名考生是总体的一个样本

B.近4万名考生是总体

C.每位考生的数学成绩是个体

D.1000名学生是样本容量

【考点】总体、个体、样本、样本容量.

【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.

【解答】解:A、1000名考生的数学成绩是样本,故A选项错误;

B、4万名考生的数学成绩是总体,故B选项错误;

C、每位考生的数学成绩是个体,故C选项正确;

D、1000是样本容量,故D选项错误;

故选:C.

【点评】本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.

2.4的算术平方根是()

A.16B.2C.﹣2D.±2

【考点】算术平方根.

【分析】根据算术平方根定义求出即可.

【解答】解:4的算术平方根是2,

故选:B.

【点评】本题考查了对算术平方根的定义的应用,主要考查学生的计算能力.

3.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()

A.B.C.D.

【考点】利用平移设计图案.

【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.

【解答】解:观察图形可知图案B通过平移后可以得到.

故选:B.

【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.

4.下列命题错误的是()

A.所有的实数都可用数轴上的点表示

B.等角的补角相等

C.无理数包括正无理数、0、负无理数

D.对顶角相等

【考点】命题与定理.

【分析】利于实数的定义、补角的性质及对顶角的性质分别判断后即可确定正确的选项.

【解答】解:A、所有的实数都可用数轴上的点表示,正确;

B、等角的补角相等,正确;

C、0不是无理数,故错误;

D、对顶角相等,正确,

故选C.

【点评】本题考查了命题与定理的知识,解题的关键是了解实数的定义、补角的性质及对顶角的性质,难度不大.

5.若m>﹣1,则下列各式中错误的是()

A.6m>﹣6B.﹣5m<﹣5C.m+1>0D.1﹣m<2

【考点】不等式的性质.

【分析】根据不等式的性质分析判断.

【解答】解:根据不等式的基本性质可知,

A、6m>﹣6,正确;

B、根据性质3可知,m>﹣1两边同乘以﹣5时,不等式为﹣5m<5,故B错误;

C、m+1>0,正确;

D、1﹣m<2,正确.

故选B.

【点评】主要考查了不等式的基本性质.不等式的基本性质:

(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;

(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;

(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.

6.如图,下列条件中,不能判断直线AB∥CD的是()

A.∠HEG=∠EGFB.∠EHF+∠CFH=180°

C.∠AEG=∠DGED.∠EHF=∠CFH

【考点】平行线的判定.

【分析】A、因为∠HEG=∠EGF,由内错角相等,两直线平行,得出AB∥CD;

B、因为∠EHF+∠CFH=180°,由同旁内角互补,两直线平行,得出AB∥CD;

C、因为∠AEG=∠DGE,由内错角相等,两直线平行,得出AB∥CD;

D、∠EHF和∠CFH关系为同旁内角,它们互补了才能判断AB∥CD;

【解答】解:A、能,∵∠HEG=∠EGF,∴AB∥CD(内错角相等,两直线平行);

B、能,∵∠EHF+∠CFH=180°,∴AB∥CD(同旁内角互补,两直线平行);

C、能,∵∠AEG=∠DGE,∴AB∥CD(内错角相等,两直线平行);

D、由B知,D错误.

故选:D.

【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

7.若方程mx+ny=6的两个解是,,则m,n的值为()

A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣4

【考点】二元一次方程的解.

【专题】计算题.

【分析】将x与y的两对值代入方程计算即可求出m与n的值.

【解答】解:将,分别代入mx+ny=6中,

得:,

①+②得:3m=12,即m=4,

将m=4代入①得:n=2,

故选:A

【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.

8.已知y轴上的点P到原点的距离为5,则点P的坐标为()

A.(5,0)B.(0,5)或(0,﹣5)C.(0,5)D.(5,0)或(﹣5,0)

【考点】点的坐标.

【分析】首先根据点在y轴上,确定点P的横坐标为0,再根据P到原点的距离为5,确定P点的纵坐标,要注意分两情况考虑才不漏解,P可能在原点上方,也可能在原点下方.

【解答】解:由题中y轴上的点P得知:P点的横坐标为0;

∵点P到原点的距离为5,

∴点P的纵坐标为±5,

所以点P的坐标为(0,5)或(0,﹣5).

故选B.

【点评】此题主要考查了由点到原点的距离确定点的坐标,要注意点在坐标轴上时,点到原点的距离要分两种情况考虑.

9.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()

A.155°B.145°C.110°D.35°

【考点】平行线的性质.

【专题】计算题.

【分析】首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.

【解答】解:如图,∵AB∥ED,∠ECF=70°,

∴∠BAC=∠ECF=70°,

∴∠FAB=180°﹣∠BAC=110°.

又∵AG平分∠BAC,

∴∠BAG=∠BAC=35°,

∴∠FAG=∠FAB+∠BAG=145°.

故选:B.

【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.

10.若不等式组2

A.a>5B.5

【考点】一元一次不等式组的整数解.

【分析】首先确定不等式组的整数解,据此确定a的范围.

【解答】解:不等式组2

故5

故选D.

【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

二、填空题:每小题4分,共24分。

11.如果“2街5号”用坐标(2,5)表示,那么(3,1)表示3街1号.

【考点】坐标确定位置.

【分析】根据有序数对的两个数表示的含乘以答即可.

【解答】解:∵“2街5号”用坐标(2,5)表示,

∴(3,1)表示“3街1号”.

故答案为:3街1号.

【点评】本题考查了坐标位置的确定,明确有序数对表示位置的两个数的实际含义是解决本题的关键.

12.如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=45度.

【考点】垂线;对顶角、邻补角.

【分析】由垂直的定义得∠EOB=90°,再根据角平分线的性质可得∠DOB的度数,再根据对顶角相等可求得∠AOC.

【解答】解:∵OE⊥AB,

∴∠EOB=90°,

又∵OD平分∠BOE,

∴∠DOB=×90°=45°,

∵∠AOC=∠DOB=45°,

故答案为:45.

【点评】本题利用垂直的定义,对顶角和角平分线的性质的性质计算,要注意领会由垂直得直角这一要点.

13.一个容量为80的样本值为143,最小值为50,取组距为10,则可以分成10组.

【考点】频数(率)分布表.

【分析】求出值和最小值的差,然后除以组距,用进一法取整数值就是组数.

【解答】解:143﹣50=93,

93÷10=9.3,

所以应该分成10组.

故答案为:10.

【点评】本题考查频率分布表中组数的确定,关键是求出值和最小值的差,然后除以组距,用进一法取整数值就是组数.

14.若点M(1,2a﹣1)在第四象限内,则a的取值范围是.

【考点】点的坐标;解一元一次不等式.

【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.

【解答】解:∵点M(1,2a﹣1)在第四象限内,

∴2a﹣1<0,

解得:a.

【点评】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.

15.若方程组,则3(x+y)﹣(3x﹣5y)的值是24.

【考点】解二元一次方程组.

【专题】整体思想.

【分析】把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.

【解答】解:∵,

∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.

故答案为:24.

【点评】本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.

16.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.

【考点】二次根式的性质与化简.

【专题】新定义.

【分析】根据新定义的运算法则a※b=得出.

【解答】解:12※4===.

故答案为:.

【点评】主要考查了新定义题型,此类题目是近年来的热点,解题关键是严格按照新定义的运算法则进行计算即可.

三、解答题(一):每小题6分,共18分。

17.计算:|﹣3|﹣×+(﹣2)2.

【考点】实数的运算.

【专题】计算题.

【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果.

【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.

【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

18.已知:代数式的值不小于代数式与1的差,求x的值.

【考点】解一元一次不等式.

【分析】先根据题意列出不等式,再求出不等式的解集,即可得出答案.

【解答】解:根据题意得:≥﹣1,

解这个不等式得:3(3x﹣2)≥5(2x+1)﹣15

9x﹣6≥10x+5﹣15

9x﹣10x≥5﹣15+6

﹣x≥﹣4

x≤4,

所以x的值是4.

【点评】本题考查了解一元一次不等式的应用,能根据题意列出不等式是解此题的关键,用了转化思想.

19.按要求画图:将下图中的阴影部分向右平移6个单位,再向下平移4个单位.

【考点】利用平移设计图案.

【分析】将对应顶点分别向右平移6个单位,再向下平移4个单位即可得出答案.

【解答】解:如图所示:

【点评】此题主要考查了利用平移设计图形,根据已知正确平移图象的顶点坐标是解决问题的关键.

四、解答题(二):每小题7分,共21分。

20.解不等式组.并把解集在数轴上表示出来.

.

【考点】解一元一次不等式组;在数轴上表示不等式的解集.

【专题】计算题;数形结合.

【分析】先解每一个不等式,再求解集的公共部分即可.

【解答】解:不等式①去分母,得x﹣3+6≥2x+2,

移项,合并得x≤1,

不等式②去括号,得1﹣3x+3<8﹣x,

移项,合并得x>﹣2,

∴不等式组的解集为:﹣2

数轴表示为:

【点评】本题考查了解一元一次不等式组,解集的数轴表示法.关键是先解每一个不等式,再求解集的公共部分.

21.如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.

【考点】平行线的判定与性质.

【专题】应用题.

【分析】根据题意可知a∥b,根据两直线平行同位角相等可知∠1=∠2,再根据对顶角相等即可得出∠3.

【解答】解:∵c⊥a,c⊥b,

∴a∥b,

∵∠1=70°

∴∠1=∠2=70°,

∴∠2=∠3=70°.

【点评】本题主要考查了平行线的判定以及平行线的性质,以及对顶角相等,难度适中.

22.某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图所示),根据图表解答下列问题:

组别次数x频数(人数)

第1组50≤x<702

第2组70≤x<90a

第3组90≤x<11018

第4组110≤x<130b

第5组130≤x<1504

第6组150≤x<1702

(1)a=10,b14.

(2)若七年级男生个人一分钟跳绳次数x≥130时成绩为优秀,则这50名男生中跳绳成绩为优秀的有多少人?优秀率为多少?

(3)若该校七年级入学时男生共有150人.请估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数.

【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.

【分析】(1)根据频数分布直方图可直接得到答案,利用50减去落在各小组的频数即可得到b;

(2)根据频数分布直方图可求得优秀的人数,然后根据×100%求得优秀率.

(3)总人数×优秀率=七年级男生个人一分钟跳绳成绩为优秀的人数.

【解答】解:(1)根据频数分布直方图知:a=10,

b=50﹣2﹣10﹣18﹣4﹣2=14.

故答案为10,14;

(2)成绩优秀的有:4+2=6(人),

优秀率为:×100%=12%;

(3)150×12%=18(人).

答:估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数为18人.

【点评】此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是根据直方图得到进一步解题的有关信息.

五、解答题(三):每小题9分,共27分。

23.如图,在四边形ABCD中,延长AD至E,已知AC平分∠DAB,∠DAB=70°,∠1=35°.

(1)求证:AB∥CD;

(2)求∠2度数.

【考点】平行线的判定与性质.

【分析】(1)根据角平分线的定义求得∠BAC的度数,然后根据内错角相等,两直线平行,证得结论;

(2)根据平行线的性质,两直线平行,同位角相等,即可求解.

【解答】(1)证明:∵AC平分∠DAB,

∴∠BAC=∠DAC=∠DAB=×70°=35°,

又∵∠1=35°,

∴∠1=∠BAC,

∴AB∥CD;

(2)解:∵AB∥CD,

∴∠2=∠DAB=70°.

【点评】本题考查了平行线的判定定理以及性质定理,解答此题的关键是:根据角平分线的定义求得∠BAC的度数.

24.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示:根据图中的数据(单位:m),解答下列问题:

(1)用含x、y的代数式表示地面总面积;

(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍.若铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?

【考点】二元一次方程组的应用;列代数式.

【专题】图表型.

【分析】(1)客厅面积为6x,卫生间面积2y,厨房面积为2×(6﹣3)=6,卧室面积为3×(2+2)=12,所以地面总面积为:6x+2y+18(m2);

(2)要求总费用需要求出x,y的值,求出面积.题中有两相等关系“客厅面积比卫生间面积多21”“地面总面积是卫生间面积的15倍”.用这两个相等关系列方程组可解得x,y的值,x=4,y=,再求出地面总面积为:6x+2y+18=45,铺地砖的总费用为:45×80=3600(元).

【解答】解:(1)地面总面积为:(6x+2y+18)m2.

(2)由题意得,解得:,

∴地面总面积为:6x+2y+18=45(m2),

∴铺地砖的总费用为:45×80=3600(元).

答:铺地砖的总费用为3600元.

【点评】第一问中关键是找到各个长方形的边长,用代数式表示面积;第二问解题关键是弄清题意,合适的等量关系,列出方程组.如:“客厅面积比卫生间面积多21”是6x﹣2y=21,”“地面总面积是卫生间面积的15倍”是6x+2y+18=15×2y.

25.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.

(1)试证明:∠O=∠BEO+∠DFO.

(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.

【考点】平行线的性质.

【专题】几何图形问题;探究型.

【分析】(1)作OM∥AB,根据平行线的性质得∠1=∠BEO,由于AB∥CD,根据平行线的传递性得OM∥CD,根据平行线的性质得∠2=∠DFO,所以∠1+∠2=∠BEO+∠DFO;

(2)作OM∥AB,PN∥CD,由AB∥CD得到OM∥PN∥AB∥CD,根据平行线的性质得∠1=∠BEO,∠2=∠3,∠4=∠PFC,所以∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠O+∠PFC=∠BEO+∠P.

【解答】(1)证明:作OM∥AB,如图1,

∴∠1=∠BEO,

∵AB∥CD,

∴OM∥CD,

∴∠2=∠DFO,

∴∠1+∠2=∠BEO+∠DFO,

即:∠O=∠BEO+∠DFO.

(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:

作OM∥AB,PN∥CD,如图2,

∵AB∥CD,

∴OM∥PN∥AB∥CD,

∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,

∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,

∴∠O+∠PFC=∠BEO+∠P.

【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.

篇7:2022七年级下数学复习重点试题

一、选择题(每题3分,共30分)

1.﹣2的相反数是()

A.﹣B.﹣2C.D.2

2.据平凉市旅游局统计,20十一黄金周期间,平凉市接待游客38万人,实现旅游收入16000000元.将16000000用科学记数法表示应为()

A.0.16×108B.1.6×107C.16×106D.1.6×106

3.数轴上与原点距离为5的点表示的是()

A.5B.﹣5C.±5D.6

4.下列项式的说法中,正确的是()

A.系数、次数都是3B.系数是,次数是3

C.系数是,次数是2D.系数是,次数是3

5.如果x=6是方程2x+3a=6x的解,那么a的值是()

A.4B.8C.9D.﹣8

6.绝对值不大于4的所有整数的和是()

A.16B.0C.576D.﹣1

7.下列各图中,可以是一个正方体的平面展开图的是()

A.B.C.D.

8.“一个数比它的相反数大﹣4”,若设这数是x,则可列出的方程为()

A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4

9.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()

A.①②③B.①②④C.②③④D.①③④

10.某商店有两个进价不同的计算器都卖了64元,其中一个盈利60%,另一个亏损20%,在这次买卖中,这家商店()

A.不赔不赚B.赚了32元C.赔了8元D.赚了8元

二、填空题(每题3分,共30分)

11.﹣3的倒数的绝对值是.

12.若a、b互为倒数,则2ab﹣5=.

13.若a2mb3和﹣7a2b3是同类项,则m值为.

14.若|y﹣5|+(x+2)2=0,则xy的值为.

15.两点之间,最短;在墙上固定一根木条至少要两个钉子,这是因为.

16.时钟的分针每分钟转度,时针每分钟转度.

17.如果∠A=30°,则∠A的余角是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是.

18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是.

19.若规定“乘以”的运算法则为:a乘以b=ab﹣1,则2乘以3=.

20.有一列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是.

三、计算和解方程(16分)

21.计算题(8分)

(1)

(2)(2a2﹣5a)﹣2(﹣3a+5+a2)

22.解方程(8分)

(1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣.

四、解答题(44分)

23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中.

24.(7分)一个角的余角比它的补角的大15°,求这个角的度数.

25.(7分)如图,∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数.

26.(7分)一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?

27.(7分)今年春节,小明到奶奶家拜年,奶奶说过年了,大家都长了一岁,小明问奶奶多大岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮小明,算出奶奶的岁数.

28.(10分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.

(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?

(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?

参考答案

一、选择题(每题3分,共30分)

题号12345678910

答案DBCDBBCAAD

二、填空题(每题3分,共30分)

11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定一条直线;

16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21.

三、计算和解方程(16分)

21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1

四、解答题(44分)

23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3)

=-6x+9x2﹣3﹣9x2+x﹣3

=-5x﹣6----------------------------------------------------------------------------4分

当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分

24.解:设这个角的度数为x,则它的余角为(90°﹣x),补角为(180°﹣x),--------2分

依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分

解得x=40°.--------------------------------------------------------------------------------------6分

答:这个角是40°.----------------------------------------------------------------------------7分

25.解:∵OM平分∠BOC,ON平分∠AOC,

∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分

∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分

=(∠BOA+∠AOC﹣∠AOC)

=∠BOA

=45°.----------------------------------------------------------------------------------------------6分

故∠MON的度数为45°.-------------------------------------------------------------------------7分

26.解:设乙还需做x天.-----------------------------------------------------------------------1分

由题意得:++=1,-------------------------------------------------------------------------4分

解之得:x=3.------------------------------------------------------------------------------------6分

答:乙还需做3天.------------------------------------------------------------------------------7分

27.解:设小明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分

4(x+5)=5x+5,---------------------------------------------------------------------------------3分

解得:x=15,-------------------------------------------------------------------------------------5分

经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分

答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分

28.解:(1)设小玲每月上网x小时,根据题意得------------------------------------------1分

(0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分

解得x=.-----------------------------------------------------------------------------------------5分

答:小玲每月上网小时;--------------------------------------------------------------------6分

(2)如果一个月内上网的时间为65小时,

选择A、计时制费用:(0.05+0.02)×60×65=273(元),----------------------------------8分

选择B、月租制费用:50+0.02×60×65=128(元).

所以一个月内上网的时间为65小时,采用月租制较为合算.--------------------------------10分

【篇三】

一、选择题:每小题3分,共30分。

1.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()

A.这1000名考生是总体的一个样本

B.近4万名考生是总体

C.每位考生的数学成绩是个体

D.1000名学生是样本容量

【考点】总体、个体、样本、样本容量.

【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.

【解答】解:A、1000名考生的数学成绩是样本,故A选项错误;

B、4万名考生的数学成绩是总体,故B选项错误;

C、每位考生的数学成绩是个体,故C选项正确;

D、1000是样本容量,故D选项错误;

故选:C.

【点评】本题考查了总体、个体、样本和样本容量的知识,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.

2.4的算术平方根是()

A.16B.2C.﹣2D.±2

【考点】算术平方根.

【分析】根据算术平方根定义求出即可.

【解答】解:4的算术平方根是2,

故选:B.

【点评】本题考查了对算术平方根的定义的应用,主要考查学生的计算能力.

3.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()

A.B.C.D.

【考点】利用平移设计图案.

【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.

【解答】解:观察图形可知图案B通过平移后可以得到.

故选:B.

【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.

4.下列命题错误的是()

A.所有的实数都可用数轴上的点表示

B.等角的补角相等

C.无理数包括正无理数、0、负无理数

D.对顶角相等

【考点】命题与定理.

【分析】利于实数的定义、补角的性质及对顶角的性质分别判断后即可确定正确的选项.

【解答】解:A、所有的实数都可用数轴上的点表示,正确;

B、等角的补角相等,正确;

C、0不是无理数,故错误;

D、对顶角相等,正确,

故选C.

【点评】本题考查了命题与定理的知识,解题的关键是了解实数的定义、补角的性质及对顶角的性质,难度不大.

5.若m>﹣1,则下列各式中错误的是()

A.6m>﹣6B.﹣5m<﹣5C.m+1>0D.1﹣m<2

【考点】不等式的性质.

【分析】根据不等式的性质分析判断.

【解答】解:根据不等式的基本性质可知,

A、6m>﹣6,正确;

B、根据性质3可知,m>﹣1两边同乘以﹣5时,不等式为﹣5m<5,故B错误;

C、m+1>0,正确;

D、1﹣m<2,正确.

故选B.

【点评】主要考查了不等式的基本性质.不等式的基本性质:

(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;

(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;

(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.

6.如图,下列条件中,不能判断直线AB∥CD的是()

A.∠HEG=∠EGFB.∠EHF+∠CFH=180°

C.∠AEG=∠DGED.∠EHF=∠CFH

【考点】平行线的判定.

【分析】A、因为∠HEG=∠EGF,由内错角相等,两直线平行,得出AB∥CD;

B、因为∠EHF+∠CFH=180°,由同旁内角互补,两直线平行,得出AB∥CD;

C、因为∠AEG=∠DGE,由内错角相等,两直线平行,得出AB∥CD;

D、∠EHF和∠CFH关系为同旁内角,它们互补了才能判断AB∥CD;

【解答】解:A、能,∵∠HEG=∠EGF,∴AB∥CD(内错角相等,两直线平行);

B、能,∵∠EHF+∠CFH=180°,∴AB∥CD(同旁内角互补,两直线平行);

C、能,∵∠AEG=∠DGE,∴AB∥CD(内错角相等,两直线平行);

D、由B知,D错误.

故选:D.

【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.

7.若方程mx+ny=6的两个解是,,则m,n的值为()

A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣4

【考点】二元一次方程的解.

【专题】计算题.

【分析】将x与y的两对值代入方程计算即可求出m与n的值.

【解答】解:将,分别代入mx+ny=6中,

得:,

①+②得:3m=12,即m=4,

将m=4代入①得:n=2,

故选:A

【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.

8.已知y轴上的点P到原点的距离为5,则点P的坐标为()

A.(5,0)B.(0,5)或(0,﹣5)C.(0,5)D.(5,0)或(﹣5,0)

【考点】点的坐标.

【分析】首先根据点在y轴上,确定点P的横坐标为0,再根据P到原点的距离为5,确定P点的纵坐标,要注意分两情况考虑才不漏解,P可能在原点上方,也可能在原点下方.

【解答】解:由题中y轴上的点P得知:P点的横坐标为0;

∵点P到原点的距离为5,

∴点P的纵坐标为±5,

所以点P的坐标为(0,5)或(0,﹣5).

故选B.

【点评】此题主要考查了由点到原点的距离确定点的坐标,要注意点在坐标轴上时,点到原点的距离要分两种情况考虑.

9.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()

A.155°B.145°C.110°D.35°

【考点】平行线的性质.

【专题】计算题.

【分析】首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.

【解答】解:如图,∵AB∥ED,∠ECF=70°,

∴∠BAC=∠ECF=70°,

∴∠FAB=180°﹣∠BAC=110°.

又∵AG平分∠BAC,

∴∠BAG=∠BAC=35°,

∴∠FAG=∠FAB+∠BAG=145°.

故选:B.

【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.

10.若不等式组2

A.a>5B.5

【考点】一元一次不等式组的整数解.

【分析】首先确定不等式组的整数解,据此确定a的范围.

【解答】解:不等式组2

故5

故选D.

【点评】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.

二、填空题:每小题4分,共24分。

11.如果“2街5号”用坐标(2,5)表示,那么(3,1)表示3街1号.

【考点】坐标确定位置.

【分析】根据有序数对的两个数表示的含乘以答即可.

【解答】解:∵“2街5号”用坐标(2,5)表示,

∴(3,1)表示“3街1号”.

故答案为:3街1号.

【点评】本题考查了坐标位置的确定,明确有序数对表示位置的两个数的实际含义是解决本题的关键.

12.如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=45度.

【考点】垂线;对顶角、邻补角.

【分析】由垂直的定义得∠EOB=90°,再根据角平分线的性质可得∠DOB的度数,再根据对顶角相等可求得∠AOC.

【解答】解:∵OE⊥AB,

∴∠EOB=90°,

又∵OD平分∠BOE,

∴∠DOB=×90°=45°,

∵∠AOC=∠DOB=45°,

故答案为:45.

【点评】本题利用垂直的定义,对顶角和角平分线的性质的性质计算,要注意领会由垂直得直角这一要点.

13.一个容量为80的样本值为143,最小值为50,取组距为10,则可以分成10组.

【考点】频数(率)分布表.

【分析】求出值和最小值的差,然后除以组距,用进一法取整数值就是组数.

【解答】解:143﹣50=93,

93÷10=9.3,

所以应该分成10组.

故答案为:10.

【点评】本题考查频率分布表中组数的确定,关键是求出值和最小值的差,然后除以组距,用进一法取整数值就是组数.

14.若点M(1,2a﹣1)在第四象限内,则a的取值范围是.

【考点】点的坐标;解一元一次不等式.

【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.

【解答】解:∵点M(1,2a﹣1)在第四象限内,

∴2a﹣1<0,

解得:a.

【点评】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求a的取值范围.

15.若方程组,则3(x+y)﹣(3x﹣5y)的值是24.

【考点】解二元一次方程组.

【专题】整体思想.

【分析】把(x+y)、(3x﹣5y)分别看作一个整体,代入进行计算即可得解.

【解答】解:∵,

∴3(x+y)﹣(3x﹣5y)=3×7﹣(﹣3)=21+3=24.

故答案为:24.

【点评】本题考查了解二元一次方程组,计算时不要盲目求解,利用整体思想代入计算更加简单.

16.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.

【考点】二次根式的性质与化简.

【专题】新定义.

【分析】根据新定义的运算法则a※b=得出.

【解答】解:12※4===.

故答案为:.

【点评】主要考查了新定义题型,此类题目是近年来的热点,解题关键是严格按照新定义的运算法则进行计算即可.

三、解答题(一):每小题6分,共18分。

17.计算:|﹣3|﹣×+(﹣2)2.

【考点】实数的运算.

【专题】计算题.

【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果.

【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.

【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

18.已知:代数式的值不小于代数式与1的差,求x的值.

【考点】解一元一次不等式.

【分析】先根据题意列出不等式,再求出不等式的解集,即可得出答案.

【解答】解:根据题意得:≥﹣1,

解这个不等式得:3(3x﹣2)≥5(2x+1)﹣15

9x﹣6≥10x+5﹣15

9x﹣10x≥5﹣15+6

﹣x≥﹣4

x≤4,

所以x的值是4.

【点评】本题考查了解一元一次不等式的应用,能根据题意列出不等式是解此题的关键,用了转化思想.

19.按要求画图:将下图中的阴影部分向右平移6个单位,再向下平移4个单位.

【考点】利用平移设计图案.

【分析】将对应顶点分别向右平移6个单位,再向下平移4个单位即可得出答案.

【解答】解:如图所示:

【点评】此题主要考查了利用平移设计图形,根据已知正确平移图象的顶点坐标是解决问题的关键.

四、解答题(二):每小题7分,共21分。

20.解不等式组.并把解集在数轴上表示出来.

.

【考点】解一元一次不等式组;在数轴上表示不等式的解集.

【专题】计算题;数形结合.

【分析】先解每一个不等式,再求解集的公共部分即可.

【解答】解:不等式①去分母,得x﹣3+6≥2x+2,

移项,合并得x≤1,

不等式②去括号,得1﹣3x+3<8﹣x,

移项,合并得x>﹣2,

∴不等式组的解集为:﹣2

数轴表示为:

【点评】本题考查了解一元一次不等式组,解集的数轴表示法.关键是先解每一个不等式,再求解集的公共部分.

21.如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.

【考点】平行线的判定与性质.

【专题】应用题.

【分析】根据题意可知a∥b,根据两直线平行同位角相等可知∠1=∠2,再根据对顶角相等即可得出∠3.

【解答】解:∵c⊥a,c⊥b,

∴a∥b,

∵∠1=70°

∴∠1=∠2=70°,

∴∠2=∠3=70°.

【点评】本题主要考查了平行线的判定以及平行线的性质,以及对顶角相等,难度适中.

22.某中学为了了解七年级男生入学时的跳绳情况,随机选取50名刚入学的男生进行个人一分钟跳绳测试,并以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图(如图所示),根据图表解答下列问题:

组别次数x频数(人数)

第1组50≤x<702

第2组70≤x<90a

第3组90≤x<11018

第4组110≤x<130b

第5组130≤x<1504

第6组150≤x<1702

(1)a=10,b14.

(2)若七年级男生个人一分钟跳绳次数x≥130时成绩为优秀,则这50名男生中跳绳成绩为优秀的有多少人?优秀率为多少?

(3)若该校七年级入学时男生共有150人.请估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数.

【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.

【分析】(1)根据频数分布直方图可直接得到答案,利用50减去落在各小组的频数即可得到b;

(2)根据频数分布直方图可求得优秀的人数,然后根据×100%求得优秀率.

(3)总人数×优秀率=七年级男生个人一分钟跳绳成绩为优秀的人数.

【解答】解:(1)根据频数分布直方图知:a=10,

b=50﹣2﹣10﹣18﹣4﹣2=14.

故答案为10,14;

(2)成绩优秀的有:4+2=6(人),

优秀率为:×100%=12%;

(3)150×12%=18(人).

答:估计此时该校七年级男生个人一分钟跳绳成绩为优秀的人数为18人.

【点评】此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是根据直方图得到进一步解题的有关信息.

五、解答题(三):每小题9分,共27分。

23.如图,在四边形ABCD中,延长AD至E,已知AC平分∠DAB,∠DAB=70°,∠1=35°.

(1)求证:AB∥CD;

(2)求∠2度数.

【考点】平行线的判定与性质.

【分析】(1)根据角平分线的定义求得∠BAC的度数,然后根据内错角相等,两直线平行,证得结论;

(2)根据平行线的性质,两直线平行,同位角相等,即可求解.

【解答】(1)证明:∵AC平分∠DAB,

∴∠BAC=∠DAC=∠DAB=×70°=35°,

又∵∠1=35°,

∴∠1=∠BAC,

∴AB∥CD;

(2)解:∵AB∥CD,

∴∠2=∠DAB=70°.

【点评】本题考查了平行线的判定定理以及性质定理,解答此题的关键是:根据角平分线的定义求得∠BAC的度数.

24.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示:根据图中的数据(单位:m),解答下列问题:

(1)用含x、y的代数式表示地面总面积;

(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积的15倍.若铺1m2地砖的平均费用为80元,那么铺地砖的总费用为多少元?

【考点】二元一次方程组的应用;列代数式.

【专题】图表型.

【分析】(1)客厅面积为6x,卫生间面积2y,厨房面积为2×(6﹣3)=6,卧室面积为3×(2+2)=12,所以地面总面积为:6x+2y+18(m2);

(2)要求总费用需要求出x,y的值,求出面积.题中有两相等关系“客厅面积比卫生间面积多21”“地面总面积是卫生间面积的15倍”.用这两个相等关系列方程组可解得x,y的值,x=4,y=,再求出地面总面积为:6x+2y+18=45,铺地砖的总费用为:45×80=3600(元).

【解答】解:(1)地面总面积为:(6x+2y+18)m2.

(2)由题意得,解得:,

∴地面总面积为:6x+2y+18=45(m2),

∴铺地砖的总费用为:45×80=3600(元).

答:铺地砖的总费用为3600元.

【点评】第一问中关键是找到各个长方形的边长,用代数式表示面积;第二问解题关键是弄清题意,合适的等量关系,列出方程组.如:“客厅面积比卫生间面积多21”是6x﹣2y=21,”“地面总面积是卫生间面积的15倍”是6x+2y+18=15×2y.

25.如图1,AB∥CD,EOF是直线AB、CD间的一条折线.

(1)试证明:∠O=∠BEO+∠DFO.

(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.

【考点】平行线的性质.

【专题】几何图形问题;探究型.

【分析】(1)作OM∥AB,根据平行线的性质得∠1=∠BEO,由于AB∥CD,根据平行线的传递性得OM∥CD,根据平行线的性质得∠2=∠DFO,所以∠1+∠2=∠BEO+∠DFO;

(2)作OM∥AB,PN∥CD,由AB∥CD得到OM∥PN∥AB∥CD,根据平行线的性质得∠1=∠BEO,∠2=∠3,∠4=∠PFC,所以∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠O+∠PFC=∠BEO+∠P.

【解答】(1)证明:作OM∥AB,如图1,

∴∠1=∠BEO,

∵AB∥CD,

∴OM∥CD,

∴∠2=∠DFO,

∴∠1+∠2=∠BEO+∠DFO,

即:∠O=∠BEO+∠DFO.

(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:

作OM∥AB,PN∥CD,如图2,

∵AB∥CD,

∴OM∥PN∥AB∥CD,

∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,

∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,

∴∠O+∠PFC=∠BEO+∠P.

【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.

七年级下数学复习重点试题

篇8:数学九年级下试题

一、选择 题(每小题3分,共30分)

1. (20xx湖北襄阳中考)△AB C为⊙O的内接三角形,若AOC=160,则ABC的度数是( )

A.80 B.160 C.100 D.80或100

2. (20xx 浙江台州中考)如图所示,点A,B,C是⊙O上三点,AOC=130 ,则ABC等于( )

A.50 B.60 C.65 D.70

3. 下 列四个命题中,正确的有( )

①圆的对称轴是直径;

②经过三个点一定可以作圆;

③三角形的外心到三角形各顶点的距离都相等;

④半径相等的两个半圆是等弧。

A.4个 B.3个 C.2个 D.1个

4. (20xx江苏苏州中考)如图所示,已知BD是⊙O直径,点A,C在⊙O上,弧AB =弧BC,AOB=60,则BDC的度数是( )

A.20 B.25 C.30 D.40

5.如图,在⊙ 中,直径 垂直弦 于点 ,连接 ,已知⊙ 的半径为2, ,则 的大小为( )

A. B. C. D.

6.如图,AB是⊙O的直径,弦CDAB于点E,CDB=30,⊙O的半径为 ,则弦CD的长为( )

A. B.3 C. D.9

7.如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有( )

A.4个 B.3个 C.2个 D.1个

8. 如图,在Rt△ABC中,ACB=90,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是( )

A.点P在⊙O内 B.点P在⊙O上

C.点P在⊙O外 D.无法确定

9. 圆锥的底面圆的周长是4 cm,母线长是6 cm,则该圆锥的侧面展开图的圆心角的度数是( )

A.40 B.80 C.120 D.150

120.如图,长为4 cm,宽为3 cm的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A位置变化为AA1A2,其 中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30角,则点A翻滚到A2位置时共走过的路径长为( )

A.10 cm B. C. D.

二、填空题(每小题3分,共24分)

11.(20xx成都中考)如图所示,AB是⊙O的弦,OCAB于C.若AB= ,OC=1,则半径OB的长为 。

12.(20xx安徽中考)如图所示,点A、B、C、D在⊙O上 ,O点在D的内部,四边形OABC为平行四边形,则OAD+OCD=

13.如图,AB是⊙O的直径,点C,D是圆上两点,AOC=100,则D= _______。

14.如图,⊙O的半径为10,弦AB的长为12,ODAB,交AB于点D,交⊙O于点C,则OD=_______,CD=_______。

15.如图,在△ABC中,点I是外心,BIC=110,则A=_______。

16.如图,把半径为1的四分之三圆形纸片沿半径OA剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比为_______。

17. 如图,一条公路的转弯处是一段圆弧(图中的 ),点O是这段弧的圆心,C是 上一点, ,垂足为 , 则这段弯路的半径是_________ 。

18.用圆心角为120,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽

(如图所示),则这个纸帽 的高是 。

三、解答题(共46分 )

19.(8分) (20xx宁夏中考)如图所示,在⊙O中,直径ABCD于点E,连结CO并延长交AD于点F,且C FAD。求D的度数。

220.(8分)(20xx山东临沂中考)如图所示,AB是⊙O的直径,点E是BC的中点,

AB=4,BED=120,试求阴影部分的面积。

21.(8分)如图所示, 是⊙O的一条弦, ,垂足为C,交⊙O于

点D,点E在⊙O上。

(1)若 ,求 的度数;(2)若 , ,求 的长。

22.(8分)如图,⊙O的半径OA、OB分别交弦CD于点E、F,且 。求证:△OEF是等腰三角形。

23.(8分)如图,已知 都是⊙O的半径,且 试探索 与 之间的数量关系,并说明理由。

24.(8分)如图是一跨河桥,桥拱是圆弧形,跨度AB为16米,拱高CD为4米,求:⑴桥拱的半径;

篇9:数学九年级下试题

题 号 一 二 三 总 分

得 分

一、选择题(每题3分,共48分)

1.若抛物线y=2xm2-4m-3+(m-5)的顶点在x轴的下方,则(  )

A.m=5  B.m=-1  C.m=5或m=-1  D。m=-5

2. 在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是(  )

A.17  B.37  C.47  D.57

3.如图是 将正方体切去一个角后形成的几何体,则该几何体的左视图为(  )

(第3题)

4.如图所示,正方形ABCD的边长为1,E,F,G,H分别为各边上的点(与A,B,C,D不重合),且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE的长为x,则S的函数图像大致是(  )

(第4题)

5.一个几何体的三视图如图所示,这个几何体是(  )

A.球  B.圆柱  C.圆锥  D。立方体

(第5题)

(第6题)

(第7题)

6.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃。一只自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟落在花圃上的概率为(  )

A.1732  B.12  C.1736  D.1738

7.如图,要拧开一个边长为a=6 mm的正六边形螺帽,扳手张开的开口b至少为(  )

A.62 mm  B.12 mm  C.63 mm  D。43 mm

8.圆心角为120°,弧长为12π的扇形半径为(  )

A.6  B.9  C.18  D。36

9.如图,P是⊙O外一点,PA,PB分别和⊙O切于A,B,C是弧AB上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA等于(  )

A.12  B.6  C.8  D。10

(第9题)

(第10题)

(第11题)

120.如图所示,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°,则∠ABD的度数是(  )

A.30°  B.25°  C.20°  D。15°

11.如图所示,扇形DOE的半径为3,边长为3的 菱形OABC的顶点A,C,B分别在OD,OE,DE︵上,若把扇形DOE围成一个圆锥,则此圆锥的高为(  )

A.12  B.22  C.372  D.352

12.在同一坐标系内,一次函数y=ax+b与二次 函数y=ax2+8x+b的图像可能是(  )

13.二次函数y=ax2+bx+c(a≠0)的图像如图所示,其对称轴为直线x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根分别为x1,x2,则x1+x2=2,其中正确的结论是(  )

A.①②   B.①③   C.②④   D.③④

(第13题)

(第14题)

(第15题)

14.如图,直线CD与以线段AB为直径的⊙O相切于点D,并交BA的延长线于点C,且AB=2,AD=1,点P在切线CD上移动(不与点C重合)。当∠APB的度数最大时,∠ABP的度数为(  )

A.15°   B.30°   C.60°   D.90°

15.如图所示,AB是 ⊙O的直径,弦BC=2 cm,F是弦BC的中点,∠ABC=60°.若动点E以2 cm/s的速度从A点出发沿着A→B→A的方向运动,设运动时间为t s(0≤t<3),连接EF,当△BEF是直角三角形时,t的值为(  )

A.74  B.1  C.74或1  D.74或1或94

16.如图所示,A点在半径为2的⊙O上,过线段OA上的一点P(异于A点)作直线l,与⊙O过A的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y的函数图像大致是(  )

(第16题)

二、填空题(每题3分,共12分)

17.若的函数y=kx2+2x-1的图像与x轴仅有一个公共点,则实数k的值为________。

18.将三块分别写有“20”“22”“北京”的牌子任意横着排,恰好排成“2022北京”或“北京2022”的概率为________。

19.如图,已知△ABC,AC=BC=6,∠C=90°.O是AB的中点,⊙O与AC,BC分别相切于点D与点E,点F是⊙O与AB的一个交点,连接DF并延长交CB的延长线于点G,则CG=________。

(第19题)

(第20题)

220.如图,已知直线y=12x与抛物线y=-14x2+6交于A,B两点,点P在直线AB上方的抛物线上运动。当△PAB的面积最大时,点P的坐标为________。

三、解答题(21题10分,22、23、24每题12分,25题14分,共60分)

21. 用5个相同的正方体木块搭出如图所示的图形。

(1)画出这个组合体的三视图;

(2)在这个组合体中,再添加一个相同的正方体木块,使得它的主视图和左视图不变。操作后,画出所有可能的俯视图。

22.某中学要在全校学生中举办“中国梦我的梦”主题演讲比赛,要求每班选一名代表参赛。九年级 (1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛。经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛)。

规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局。若为平局,继续上述游戏,直至分出胜负为止。

如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:

(1)小亮掷得向上一面的点数为奇数的概率是多少?

(2)该游戏是否公平?请用列表或画树形图等方法说明理由。

(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)

23.已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0),A(5,0),B(m,2),C(m-5,2)。

(1)问:是否存在这样的`m,使得在边BC上总存在点P,使∠OPA=90°?若存在,求出m的取值范围;若不存在,请说明理由。

(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值。

2 4.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张 薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例。在营销过程中得到了下面表格中的数据。

薄板的边长/cm 20 30

出厂价/(元/张) 50 70

(1)求一张薄板的出厂价与边长之间满足的函数关系式;

(2)已知出厂一张边长为40 cm的薄板,获得的利润是26元(利润=出厂价-成本价)。

①求一张薄板的利润与边长之间满足的函数关系式;

②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?

参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是-b2a,4ac-b24a.

25.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为4,-23,且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边)。

(1)求抛物线的表达式及A,B两点的坐标。

(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值;若不存在,请说明理由;

(3)在以AB为直径的⊙M中,CE与⊙M相切于点E,CE交x轴于点D,求直线CE的表达式。

(第25题)

★ 七年级数学下册试题

★ 七年级数学检测试题

★ 七年级下历史期中试题

★ 初一下数学第五章试题

★ 人教版七年级下数学教学计划

★ 七年级数学下教学设计

★ 七年级数学绝对值检测试题及答案

★ 七年级上册数学期末考试试题两套

★ 七年级上册数学第三章检测试题

★ 七年级下历史教案

上一篇:

涨幅直逼英伟达!美股大数据龙头创年内新高 分析师力挺:堪称“AI界梅西”

下一篇:

最后一页

x
推荐阅读

七年级下数学优化试题

涨幅直逼英伟达!美股大数据龙头创年内新高 分析师力挺:堪称“AI界梅西”

狼牙山五壮士的电影(CFAK狼牙性能和伤害怎么样)

表观遗传疗法证实了减少APOE表达对阿尔茨海默病的疗效

医保局再谈“价值购买”,支付环境对创新药商业化有何影响?

天猫自营业务“猫享”将于9月30日关闭

北京强降雨已致11人遇难27人失联,其中2人因公殉职

中国外运跌近12% 澄清无意推进任何资本交易

总投资52亿元 今创新能源项目集中开工

网传故宫600年不积水 却因现代科技积水 官方辟谣

美国亚利桑那州凤凰城郊区发生火灾 多人受伤

贪吃小怪物百科_贪吃小色女

AKM推新型多核DSP 用于下一代车载声音设计

开源证券发布隆平高科研报 公司信息更新报告:历史包袱加速处置 收购优质资产并表经营向好

水利部:海河流域发生流域性较大洪水,防汛进入关键时刻

最高法发布依法平等保护民企典型案例

「威海天气」8月1日,温度25℃~30℃,多云

中国三江化工(02198)发盈喜 预期上半年权益持有人应占纯利逾2000万元 同比扭亏为盈

北向资金近7日买卖这些个股

LOFTER TF三代论坛/综艺体推文

大板桥街道阿底社区:蜂蜜产业带来甜蜜生活

万达酒店发展:预计上半年公司拥有人应占溢利不低于1.4亿港元

玖隆再生拟向江苏金融租赁股份有限公司申请1000万融资租赁业务 融资期限24个月

组图|巴东,诗画山水的绝美意境!

深圳ENJOY | 主打一个凉快!暑期带娃来这里,避暑还能涨知识

惊艳句子(31)  刘汉文

索尼tx10优缺点_索尼tx1

北京门头沟区强降雨已致2人死亡

前武汉江城球员讨薪:行业乱象丛生+无赖老板,中国足球未来何在

射击之星 大盘还有新高

北京发布分区暴雨红色预警,部分地区降级发布暴雨橙色预警

同事家双胞胎女儿百日宴送什么同事家双胞胎女儿百日宴送这些

联想等入股计算芯片企业进迭时空

大运观察|“显眼包”蓉宝和它的“破圈”密码

2023年8月北京限行尾号时间表

今年上半年物流持续恢复 结构进一步优化

市属镇用、镇属村用 万宁促卫生人才下沉基层服务

定西市多维发力优化育才聚才环境

如何选择适合的游戏代理?关键因素一一揭秘!

生人勿进!国内四大无人区到底有多恐怖?

把幸福“圈”在百姓身边

螃蟹不洗直接蒸可以吗

宝骏云朵开启盲订 将8月10日上市 标配双大屏

专案重攻坚 侦缉注活力

泰山旅馆一条街(泰山旅馆)

China's pandas endure as symbol of cross-border harmony, friendship, understanding

知名PS3模拟器RPCS3放弃Win7!将仅支持Win10/11系统

北京环球影城主题公园、环球城市大道明天恢复开放

四川省凉山彝族自治州冕宁县2023-07-30 18:15发布雷电黄色预警

人造板是什么材料做的结实吗(人造板是什么)